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Experiments have been undertaken to investigate dam-break flows where a thin plate
separating water at different levels is withdrawn impulsively in a vertically upwards
direction. Depth ratios of 0, 0.1 and 0.45 were investigated for two larger depth values
of 10 cm and 36 cm. The resulting sequence of surface profiles is shown to satisfy
approximately Froude scaling. For the dry-bed case a horizontal jet forms at small
times and for the other cases a vertical, mushroom-like jet occurs, none of which have
been observed previously. We analyse the initial-release problem in which the plate
is instantaneously removed or dissolved. Although this shows singular behaviour,
jet-like formations are predicted. Artificially smoothing out the singularity enables
a fully nonlinear, potential-flow computation to follow the jet formation for small
times. There is qualitative agreement between theory and experiment.

In the experiments, after a bore has developed downstream as a result of highly
complex flow interactions, the surface profiles agree remarkably well with exact
solutions of the shallow-water equations which assume hydrostatic pressure and
uniform velocity over depth.

1. Introduction
Dam-break flows are an important practical problem in civil engineering and their

prediction is now a required element in the design of a dam and its surrounding
environment. The idealized two-dimensional problem of the instantaneous removal of
a barrier between two bodies of water at rest with different levels above a horizontal
bed has long been a test case for numerical simulations. This is probably because
analytical solutions exist if the assumption of hydrostatic pressure is made so that the
problem reduces to a one-dimensional problem. This may be generalized to a two-
dimensional horizontal plane problem to provide the basis for practical numerical
simulations. The equations are known as the shallow-water equations. Simulations
based on the full Navier–Stokes/continuity equations have also been made, where the
surface is tracked through a fixed mesh, either using particles (the marker-and-cell
method), e.g. Harlow & Welch (1965) and Nichols & Hirt (1971), or through surface
water concentrations (the volume-of-fluid method), e.g. Hirt & Nichols (1981). The
results, at least in terms of the variation of depth profiles with time, have appeared
broadly similar to those for the shallow-water solutions.

In practice the release of water will be more gradual than this idealization and
depend on water/soil interaction or concrete fracture at a breach. However the

† This article first appeared in volume 370, pp. 203–220 but without p. 213. This reprinting
replaces that version and it will be the one that is referenced.
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Figure 1. Sketch of experimental arrangment: (a) side view;
(b) section showing pulley/weight system.

instantaneous release may be expected to give the worst case scenario and is therefore
a situation of practical, as well as fundamental, interest.

There has been relatively little experimental or theoretical investigation of the initial
stages just after release. Here we study the problem experimentally at two different
scales in a horizontal channel of rectangular section; a vertical flat plate separating
the two levels of water is suddenly withdrawn (upwards). The instantaneous release
is then analysed theoretically and some very accurate free-surface computations are
made for small times, based on a time-stepping boundary-integral method valid for
potential flow. Finally the experimental results are compared with solutions of the
shallow-water equations.

2. Experiment
The experiment was conducted in a flume 15.24 m long, 0.4 m wide and 0.4 m high

with a horizontal bed, shown in figure 1. Clear Perspex walls were used upstream and
downstream of the dam site to view the flow. Both ends of the flume could be closed
and the dam site was set up 9.76 m downstream of one end. The dam itself was a
thin metal plate, 3 mm thick, which could slide in small plastic channels mounted at
a section around the flume bed and sides. Some grease was added to the channels
to minimize leakage. A wire rope was attached to the top of the plate; the rope was
drawn over a pulley about 3 m above the ground with a 7 kg weight attached to the
other end. With the plate in position and the rope taut, the weight is close to the
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(a)

t = 0.16 s 0.24 s

0.32 s 0.38 s

0.70 s 1.00 s

Figure 2 (a). For caption see p. 412.

ground. An upward impulse is generated by raising the weight and releasing it, with
the rope slack, when it is 0.8 m above the ground.

The flow is visualized by a laser light sheet produced by a 4 W argon-ion laser with
a fibre-optic cable which directs the beam above the flume through a lens to produce
a vertical plane light sheet along the flume at about 7 cm from the near flume wall.
The width of the sheet is 1–3 mm. The flow is recorded on a CCD video camera
giving a field of view of about 0.83 m height and 1.0 m length. The video images are
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(b)

t = 0.20 s 0.36 s

0.44 s 0.60 s

0.76 s 1.26 s

Figure 2 (b). For caption see p. 412.

recorded at effectively 25 frames/sec and are digitized as 512 × 512 pixels with 256
grey levels through a frame grabber on a PC. Since the field of view unfortunately
did not cover the entire flow area of interest, the camera had to be moved and the
experiment repeated to obtain a complete visualization.

The free surface is obtained from the digitized images. The camera inevitably
produces distortion. To correct this, a plane white board with a uniform square mesh
printed on it is placed in the plane of the laser sheet with the flume empty and full
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(c)

t = 0.10 s 0.32 s

0.52 s 0.64 s

1.00 s 1.44 s

Figure 2 (c). For caption see p. 412.

of water so that the distortion of the mesh may be quantified and any position in a
video frame can thereafter be interpolated relative to the mesh. This takes account
of refraction effects associated with water and Perspex. In this paper free-surface
profiles only are presented. Velocity fields have also been produced by analysing
successive images (the particle-image velocimetry method) and were particularly useful
for investigating dam-break flows over obstacles (Chegini 1997). Surface elevations
at various longitudinal positions were also measured using resistance probes and
essentially confirmed the results from the video images.
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(d)

t = 0.52 s

0.64 s

Figure 2. Digitized video images (untreated) at different times. (a) Dry-bed case. The first four
images are with the camera just downstream of the dam, for the fifth the camera position is further
downstream and for the sixth further downstream again. (b) Case with a depth ratio of 0.1. The
camera is just downstream of the dam for the first three images, further downstream for the next
two images and further downstream again for the last image. (c) Case with a depth ratio of 0.45.
The camera is just downstream of the dam for the first four images, further downstream for the
next image and further downstream again for the last image. (d) Enlargements of (c) at t = 0.52
and 0.64 s.
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Figure 3 (a). For caption see p. 415.

The experiments were made at two scales: with upstream depths (η0) of 0.1 m and
0.36 m and downstream depths of 0, 0.1η0, and 0.45η0 (depth ratios of 0, 0.1 and 0.45).
If viscous and surface tension effects are negligible, the surface profiles should scale
according to Froude criteria.

Figure 2(a–d) shows typical digitized images from the larger scale. The water surface
is shown by the illuminated line. To aid illumination, Perspex powder is dropped on
to the surface around the dam at the moment of its withdrawal and the powder is
rapidly convected downstream. The laser sheet produces an illuminated line of finite
thickness. This is usually quite thin before air entrainment occurs except in the region
of jet formation at small times. It is not clear whether this is due to the finite sheet
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Figure 3 (b). For caption see facing page.

thickness or, more likely, digital noise associated with the high velocity in the jet. The
surface is here defined by the inner limit of the illuminated line. This would coincide
with the plane in the laser light sheet nearest to the camera if the sheet thickness
causes the finite line thickness or with the start of the ‘exposure’ time. After the jet
formation, the line is quite thin until water becomes aerated in the formation of a
bore and the air bubbles reflect light. The water surface is then defined as the surface
bounding the water/air mixture. Figure 2(a) shows results for the (nearly) dry-bed
case; the first four images are with the camera just downstream of the dam, for the
fifth the camera position is further downstream and for the sixth further downstream
again. After a change in camera position the run was repeated. Figure 2(b) shows
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Figure 3. Profiles of maximum elevations obtained experimentally, normalized by η0, for two scales
(0.36 m and 0.1 m upstream depths) for a sequence of times. x = 0 corresponds to the dam site. (a)
Dry-bed case. (b) Case with a depth ratio of 0.1. (c) Case with a depth ratio of 0.45.

results for the depth ratio of 0.1 where the camera is just downstream of the dam for
the first three images, further downstream for the next two images and even further
downstream for the last image. The light intensity just to the left of the mushroom
jet appears particularly bright because the Perspex particles cluster as a result of
the mushroom structure delaying their convection downstream. The video pictures
suggest this region is in fact a mixture of spray and particles. Figure 2(c) shows results
with a depth ratio of 0.45; here the camera is just downstream of the dam for the first
four images, further downstream for the next image and still further downstream for
the last time. Enlargements are shown in figure 2(d) for t = 0.52 and 0.64 s to show
the mushroom-jet formation.

It is apparent from the video recordings that the plate is completely withdrawn
from the flume in about 5 frames or 0.1 s. The time taken to be removed from the
water will be rather less. The time origin t = 0 is defined as the instant when the plate
leaves the bed. Figure 3 shows surface profiles with upstream depths η0 of 0.1 m and
0.36 m, where the x, y-coordinates are normalized by η0. If the Froude law is satisfied,
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Figure 4. Definition sketch for initial-release analysis.

identical normalized profiles will occur when the ratio of the large-scale time to the
small-scale time is

√
3.6 ≈ 1.9. This ratio is maintained as closely as possible when

choosing frames for comparison. Figure 3(a) shows results for the dry-bed case and
there are quantitative differences at all times. Although termed the dry-bed case, the
downstream bed in fact has a thin film of water to a depth of 1–3 mm due to leakage.
At the first time shown, a horizontal jet is formed at somewhat different positions
for the two scales although in this case the time ratio is 2.0 (not 1.9). Thereafter, the
general shape of the surge wave is quite similar at the two scales. It is possible that
the finite time for plate withdrawal (less than 0.1 s) has some effect, particularly for
very small times.

Figure 3(b) shows profiles with the depth ratio 0.1. Here a remarkable mushroom
form erupts vertically with similar normalized dimensions at both scales. A forward
jet is then produced which is clearly visible at the larger scale. It plunges forward
into still water generating a further upward motion or splash, in the manner of a
plunging breaker in a coastal engineering context. These latter formations are seen in
the raw images of figure 2 but are not shown in the profiles which show the maximum
surface elevation. This jet structure is not seen clearly at the smaller scale although
the maximum elevations are quite similar.

Finally the case with a depth ratio of 0.45 is shown in figure 3(c). Here the
profiles are quite similar at the two scales and, although a surge wave does not form
downstream, figure 2(c) shows the formation of a wave which breaks, entraining air,
having a similar form to what is known as a spilling breaker in a coastal engineering
context. It appears from figure 2(c) and enlargements in figure 2(d) that a mushroom-
like jet again forms just after the dam is withdrawn, as the large-scale downstream
wave formation takes place.

3. Theory
3.1. Initial release analysis

We consider the release of an inviscid fluid which is initially stationary with two
different water levels in regions 1 and 2, separated by a vertical sheet ABC, as shown in
figure 4. At time t = 0, the sheet ABC is removed or dissolved instantaneously, causing
an instantaneous adjustment of the pressure field since the fluid is incompressible. The
pressure which was discontinuous on BC becomes continuous and the pressure on
AB becomes constant (atmospheric). This adjustment of the pressure field causes the
resulting unsteady motion, eventually producing a bore as observed experimentally.

We can compute the adjustment of the pressure field from the conservation equa-
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A

B

Figure 5. Pressure contours within the fluid at the time of release, and acceleration vectors on
the surface, with the arrow length proportional to magnitude. For corner B this magnitude is
theoretically infinite. The depth ratio is 0.1.

tions for mass and momentum. In regions 1 and 2, p1 and p2 are the hydrostatic
pressures before the sheet is dissolved. Just after the sheet is dissolved, since the
velocities are zero at t = 0, the momentum equations become

∂

∂t
(∇φ1) = −1

ρ
∇p1 + g, (1)

∂

∂t
(∇φ2) = −1

ρ
∇p2 + g, (2)

where φ = φ(x, t) is velocity potential, x = (x, y) and g = (0,−g), g being the
acceleration due to gravity. Taking the divergence of these equations,

∇2p1 = 0, (3)

∇2p2 = 0 (4)

since ∇2φ1 = 0,∇2φ2 = 0.
The boundary conditions may be given by p2 = p1 = 0 along the free surface,

∂p1/∂x = ∂p2/∂x on the interface between 1 and 2 (BC), ensuring the velocity normal
to this interface is continuous across it, and ∂p1/∂y = ∂p2/∂y = −ρg along the
horizontal bed. At large distances from the interface the pressure change is negligible
due to release at t = 0 and we set ∂p1/∂x = ∂p2/∂x = 0.

We may now solve ∇2p = 0 (omitting suffices 1 and 2) and pressure contours are
shown in figure 5 for the depth ratio of 0.1. There is clearly a singularity at the
corner B. The results shown were obtained numerically on a uniform mesh using a
finite-difference approximation. There are similar results for depth ratios of 0 and 0.45.

The flow accelerations are given by (1), (2) and vectors are shown on the surface
by the arrows in figure 5. Note that the arrow from corner B is theoretically of
infinite length due to the singularity. The surface at corner A falls vertically with
gravitational acceleration alone and the surface at large distances from the interface
remains stationary.

A singularity is of course physically impossible but this analysis indicates that there
will be jet formation at B. The flow development for small time may be considered
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further by artificially removing the singularity by smoothing the corner at B and
computing the fully nonlinear, potential flow with a free surface.

3.2. Nonlinear potential-flow theory for small times

The potential flow with a free surface at constant pressure (set to zero) in a vertical
plane may be described by the velocity potential φ, which satisfies the following
equations:

in the fluid

∇2φ = 0, (5)

on the free surface

Dx

Dt
= ∇φ, (6)

Dφ

Dt
= 1

2
| ∇φ |2 −gη, (7)

and on the bed

∂φ

∂y
= 0, (8)

where D/Dt is the total derivative. The bed is treated as a plane of symmetry and
there is no flow at the vertical surfaces defining the ends of the computational domain.

An accurate numerical method for the solution of this problem is described in
Cooker et al. (1990), developed from the method of Dold & Peregrine (1986), see also
Dold (1992). The flow is described as a boundary-integral problem where particle
positions on the free surface and their velocity potential are advanced in time. The
points may be arbitrarily chosen and clustered around regions where high distortion
is expected in order to give high accuracy. Cauchy’s integral theorem is applied to the
complex velocity on the surface. The resulting integrals are of principal-value form
with singular parts and the non-singular parts are obtained using the trapezoidal
rule. The horizontal bed is represented by adding the image of the surface in the bed.
Time advancement is described by a fifth-order Taylor series. The method requires a
‘smooth’ surface and breaks down if the curvature at any point becomes too great
for accurate numerical resolution.

Figure 6(a) shows the results from the computations with a thin layer of water
downstream. The very small water depth rather than a dry bed was necessary in the
numerical scheme. To avoid right angles at the changes in surface level an initial
shape of the form

η

η0

= 0.01 + 0.5(1− tanh(kx/η0)) (9)

is used. Results with k = 10 are shown in figure 6(a) up to the time when the surface
curvature becomes so great at the outer ‘corners’ of the jet that the solution breaks
down. Reducing k made this time larger and increasing k made it smaller. The profiles
all show a horizontal jet qualitatively similar to those seen in the experiments.

Figure 6(b) shows results with a depth ratio of 0.1. In this case the initial profile
is smoothed by replacing the right angles at the intersections of the horizontal and
vertical surfaces by circular arcs of radius 0.1η0. Reducing the radius decreased the
time at which the surface curvature becomes so large that the solution breaks down
and increasing the radius increased this time. An upward mushroom-like jet is clearly
seen, qualitatively similar to that observed experimentally.
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Figure 6. Profiles of surface elevation from nonlinear potential-flow computations, with the up-
stream depth (0.1 m) of the small-scale experiment. (a) Dry-bed case (downstream depth of 0.01η0)
at succesive times of 0, 0.036, 0.05, 0.074, 0.085 s. (b) Case with a depth ratio of 0.1 at successive
times of 0, 0.024, 0.04, 0.066, 0.08 s. (c) Case with a depth ratio of 0.45 at successive times of of 0,
0.02, 0.03, 0.052, 0.076, 0.08 s.

For the depth ratio of 0.45 with the same circular-arc smoothing, an initial jet
structure is shown in figure 6(c), again similar to that observed experimentally.

3.3. Shallow-water theory

With the assumption of hydrostatic pressure, the Navier–Stokes/continuity equations
with a free surface reduce to the shallow-water equations. It is further assumed
that the velocity is uniform over depth. Following Stoker (1957) the two-dimensional
vertical plane problem becomes a one-dimensional problem and for a horizontal bed
ignoring friction the mass and momentum conservation equations are given by

∂η

∂t
+

∂

∂x
(uη) = 0, (10)

∂u

∂t
+ u

∂u

∂x
= −g ∂η

∂x
, (11)

where η is water surface elevation above the bed and u is the velocity in the x-direction.
The equations may be written[

(u± c) ∂
∂x

+
∂

∂t

]
(u± 2c) = 0, (12)

where c = (gη)1/2 and the Riemann invariants (u± 2c) are constant.
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Figure 7. Typical profiles from the shallow-water equations: (a) dry-bed downstream,
(b) with water downstream.

First, we consider the simplest analytical case of a dry bed (zero depth) downstream
of a depth η0 where the initial condition and a later elevation profile are shown in
figure 7(a). A negative wave is produced and the movement of a moving point is
described by the backwards characteristic

dx

dt
= u− c, (13)

and the constant value of the forward Riemann invariant is given by the initial
condition (t = 0)

u+ 2c = 2c0, (14)

where c0 = (gη0)
1/2.

Since the characteristic is a straight line we have the simple relation in the region
of wave propagation

x =
[
2(gη0)

1/2 − 3(gη)1/2
]
t. (15)

With non-zero depth downstream the problem is a little more complicated. Equation
(15) still applies upstream but there is also a bore travelling downstream into the still
water region as shown in figure 7(b), where the different flow regimes are numbered.
A physical constraint defining the bore is that velocity is continuous at the boundary
between regions 1 and 2 where the elevation is also continuous. At this boundary (A)
from region 1

uA = 2c0 − 2(gηA)1/2 (16)

and uA is thus the value for region 2. Constant mass flux must also be maintained
across the bore (position B) advancing with speed cB giving

−cBη3 = (uA − cB)ηA (17)

where ηA = ηB = η2, uA = u2, and with the equation for a bore moving into still water

c2
2

c2
3

=
ηA

η3

=
1

2

[(
1 + 8

c2
B

c2
3

)1/2

− 1

]
(18)

the situation is defined and may be solved in an iterative procedure. Substituting for
cB and uA gives ηA/η3 which is independent of time.
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Figure 8 (a). For caption see p. 423.
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Figure 8 (b). For caption see facing page.

The depth at the dam site is constant at 4
9
η0 provided the downstream depth is less

than 0.1384η0 and otherwise is constant at a greater value.
Comparisons with experimental profiles are shown in figure 8(a–c) for the smaller

scale (since the time of plate withdrawal above the water level is smaller and air
entrainment appears rather less than at the larger scale). For all depth ratios, while
the differences at small times are substantial, the profiles eventually become quite
similar after the bore has developed downstream. The experimental profiles show
the upper limit of the flow including the air/water mixture since this can be simply
measured.

The influence of friction was investigated in a numerical simulation and was found
to have an insignificant effect on the results.
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Figure 8. Profiles of maximum elevation for the smaller-scale experiment (dimensions in cm) with
solutions of the shallow-water equations for a sequence of times. (a) Dry-bed case. (b) Case with a
depth ratio of 0.1. (c) Case with a depth ratio of 0.45.

4. Conclusions
Experiments on dam-break flow have shown some new jet-like phenomena just

after release. These features are consistent with analysis for the time of release and,
for small times afterwards, are reproduced qualitatively in highly accurate, nonlinear,
potential-flow computations with artificially-smoothed, initial surface profiles. In the
experiments the jets interacted with the bed or the downstream water in a highly
complex manner, entraining air, but after a bore (or spilling breaker) had become
established the profiles showed quite close agreement with analytical solutions of the
shallow-water equations.
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